Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Cells ; 12(10)2023 05 09.
Article in English | MEDLINE | ID: covidwho-20231148

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a viral infection caused by SARS-CoV-2 that induces a generalized inflammatory state. Organokines (adipokines, osteokines, myokines, hepatokines, and cardiokines) can produce beneficial or harmful effects in this condition. This study aimed to systematically review the role of organokines on COVID-19. PubMed, Embase, Google Scholar, and Cochrane databases were searched, the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and 37 studies were selected, comprising more than 2700 individuals infected with the virus. Among COVID-19 patients, organokines have been associated with endothelial dysfunction and multiple organ failure due to augmented cytokines and increased SARS-CoV-2 viremia. Changes in the pattern of organokines secretion can directly or indirectly contribute to aggravating the infection, promoting immune response alterations, and predicting the disease progression. These molecules have the potential to be used as adjuvant biomarkers to predict the severity of the illness and severe outcomes.


Subject(s)
COVID-19 , Humans , SARS-CoV-2
2.
Nutrients ; 13(12)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1554919

ABSTRACT

The COVID-19 pandemic and subsequent self-isolation exacerbated the problem of insufficient amounts of physical activity and its consequences. At the same time, this revealed the advantage of vitamin D. Thus, there was a need to verify the effects of those forms of training that can be performed independently. In this study, we examined the effects of Nordic walking (NW) and high intensity interval training (HIIT) with regard to the impact of the metabolite vitamin D. We assigned 32 overweight adults (age = 61 ± 12 years) to one of two training groups: NW = 18 and HIIT = 14. Body composition assessment and blood sample collection were conducted before starting the training programs and a day after their completion. NW training induced a significant decrease in myostatin (p = 0.05) concentration; however, the range was dependent on the baseline concentrations of vitamin D metabolites. This drop was accompanied by a significant negative correlation with the decorin concentration. Unexpectedly, NW caused a decrement in both forms of osteocalcin: undercarboxylated (Glu-OC) and carboxylated-type (Gla-OC). The scope of Glu-OC changes was dependent on a baseline concentration of 25(OH)D2 (r = -0.60, p = 0.01). In contrast, the HIIT protocol did not induce any changes. Overall results revealed that NW diminished the myostatin concentration and that this effect is more pronounced among adults with a sufficient concentration of vitamin D metabolites.


Subject(s)
COVID-19 , High-Intensity Interval Training , Myostatin/blood , Nordic Walking , Overweight , SARS-CoV-2/metabolism , Vitamin D/blood , Aged , COVID-19/blood , COVID-19/physiopathology , Female , Humans , Male , Middle Aged , Overweight/blood , Overweight/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL